tively large thermal displacements for the μ -H atom are consistent with the deformability of the Cr-H-Cr linkage. Despite the fact that it is surrounded by the cryptate molecule, the K⁺ ion is not totally screened from interacting with atoms outside its immediate coordination environment. Consequently, whenever a cryptate cation is employed as the counterion for structural studies of polynuclear anions, the potential importance of cation-anion interactions should not be overlooked.

Acknowledgment. This work was performed under the auspices of the Office of Basic Energy Sciences of the U.S. Department of Energy. This collaborative study was partially supported by the National Science Foundation under Project No. CHE78-20698 (to J.M.W.).¹

Registry No. $[K(crypt-222)]^+[Cr_2(CO)_{10}(\mu-H)]^-$, 75198-25-3; Cr(CO)₆, 13007-92-6.

Supplementary Material Available: Tables of positional and thermal parameters, interatomic distances and bond angles, root-mean-square thermal displacements, and observed and calculated structure factor amplitudes (40 pages). Ordering information is given on any current masthead page.

Contribution from the Istituto di Chimica Generale, Università di Pisa, 56100 Pisa, Italy, and the Istituto di Strutturistica Chimica, Università di Parma, 43100 Parma, Italy

Activation of CO₂-like Molecules: Synthetic and Structural Studies on a η^2 -C,N Metal-Bonded Carbodiimide and Its Conversion into a η^2 -C,N Metal-Bonded Amidinyl Ligand

MARCO PASQUALI, SANDRO GAMBAROTTA, CARLO FLORIANI,* ANGIOLA CHIESI-VILLA, and CARLO GUASTINI

Received May 14, 1980

Vanadocene reacts with *p*-tolylcarbodiimide (*p*-TCD) producing a metallaazacyclopropane-like complex $Cp_2V(RN-C=NR)$ (I) (R = *p*-CH₃C₆H₄; Cp = η^5 -C₅H₅; $\nu_{CN}(Nujol)$ 1645 cm⁻¹; μ_{eff} = 1.76 μ_B at 293.5 K). The X-ray analysis performed on complex I shows that vanadium is η^5 bonded to the two Cp rings, which are in a bent arrangement, making a cavity in the equatorial plane for the CN_2 unit. The C-N bond distances agree with the presence of a single C-N bond interacting with the metal and a free C=N double bond. Complex I reacts with both O₂ and I₂, releasing p-TCD. Coordinated p-TCD is converted in a η^2 -C,N metal-bonded trialkylamidinyl ligand by the action of CH₃I on complex I. The reaction with

CH₃I, followed by the addition of I₂, allowed isolation of $[Cp_2V(R(CH_3)NC - NR)]I_3$ (II) (R = p-CH₃C₆H₄; $\nu_{CN}(Nujol)$ 1680 cm⁻¹; $\mu_{eff} = 1.78 \,\mu_B$ at 293 K). The X-ray analysis showed an overall structure of the cation similar to that of I, with the amidinyl ligand acting as a three-electron-donor ligand and displaying a bonding mode similar to that observed for η^2 -C,O acyls and η^2 -C,N iminoacyls. The two C-N bond distances within the CN₂ unit have a high double-bond character (1.26 (2) and 1.33 (2) Å), indicating a significant electronic delocalization all over the VCN₂ unit with a carbenoid character for the carbon bonded to the vanadium atom. In both complexes, V-C bond distances (about 2.0 Å) fall in the expected range for a V-C (sp²) bond. Crystallographic details for complex I: space group $Pna2_1$ (orthorhombic); a = 14.446 (3) Å, b = 14.186 (2) Å, c = 20.903 (4) Å, V = 4283.7 Å³; Z = 8; $D_{calcd} = 1.251$ g cm⁻³. The final R factor was 8.4% for 1439 observed reflections. Crystallographic details for complex II: space group $P2_1/c$ (monoclinic); a = 14.260 (6) Å, b = 19.176 (5) Å, c = 10.628 (4) Å; $\beta = 106.92$ (5)°; V = 2780.4 Å³; Z = 4; $D_{calcd} = 1.910$ g cm⁻³. The final R factor was 6.3% for 2283 observed reflections.

Introduction

The interest in carbodiimide-transition metal chemistry is justified by the nature of carbodiimides, which closely imitate carbon dioxide, as well as by the possibility of modifying their reactivity¹ with the assistance of a metal center.

The so far reported results concerning the reaction between carbodiimides and transition-metal complexes have been summarized below.

(i) Carbodiimides have been found to be σ bonded through a nitrogen atom to the metal

in some Pd(II) complexes.²

(ii) Carbene-like metals add to one of the C=N bonds, as in

This metal-carbodiimide interaction suggested for

* To whom correspondence should be addressed at the Università di Pisa.

(PPh₃)₂Ni(PhN=C=NPh)³ was structurally proven in $Cp_2V(p-TCD)$ (Cp = η^5 -C₅H₅; p-TCD = p-tolylcarbodiimide), whose synthesis and structure are described in this paper. This is the first structural report on a metal-carbodiimide complex.

(iii) Metal-carbonyl complexes promote the so-called disproportionation of carbodiimides⁴⁻⁶ to dihydrotrialkylguanidinium dianion, A, being complexed by the metal and

$$2RN = C = NR + 2e^{-} \rightarrow \begin{bmatrix} NR \\ || \\ RN - C - NR \end{bmatrix}^{2^{-}} + RNC$$

isocyanide. This metal-promoted carbodiimide transformation seems to involve the dimerization of the organic molecule as a key step in a sequence like $^{6-9}$

- (1) Reichen, W. Chem. Rev. 1978, 78, 569.
- (2) Bycroft, B. M.; Cotton, J. D. J. Chem. Soc., Dalton Trans. 1973, 1867.
- (3) Hoberg, H.; Korff, J. J. Organomet. Chem. 1978, 150, C20. (4) Bremer, N. J.; Cutcliffe, A. B.; Farona, M. F.; Kofron, W. G. J. Chem.
- Soc. A 1971, 3264.
- (5) Cotton, J. D.; Zornig, S. D. Inorg. Chim. Acta 1977, 25, L133.
 (6) Duggan, M. D. Inorg. Chem. 1979, 18, 903.

(iv) Two molecules of *p*-tolylcarbodiimide (*p*-TCD) have been reductively coupled to a tetra-p-tolyloxalylamidinyl ligand via a C-C bond formation:10

An interesting relationship can be found between CO_2 and carbodiimides in their interaction with metal centers. Some of the presented carbodiimide metal-induced transformations occur with CO_2 , while others represent a prospect of the CO_2 metal-promoted reactivity.

The present report concerns the synthesis and the structure of a η^2 -C,N metal-bonded *p*-tolylcarbodiimide. The alkylation of the coordinated carbodiimide gives a η^2 -C,N metal-bonded trialkylamidinyl ligand. This carbodiimide metal-controlled transformation represents a modeling study of carbon dioxide alkylation.

Experimental Section

All the reactions described were carried out under an atmosphere of purified nitrogen. Solvents were purified by standard methods. Bis(η -cyclopentadienyl)vanadium(II) was prepared as in the literature.¹¹ p-Tolylcarbodiimide (p-TCD) was recrystallized from toluene. IR spectra were measured with a Perkin-Elmer 282 spectrophotometer. Magnetic susceptibility measurements were made with a Faraday balance.

Synthesis of Cp₂V(p-TCD). Bis(cyclopentadienyl)vanadium (1.81 g, 10.0 mmol) dissolved in a toluene-hexane mixture (30 mL + 10 mL), reacted with p-tolylcarbodiimide (2.22 g, 10.0 mmol) at room temperature. The color of the solution changed suddenly from violet to deep red. The addition of 5 mL of hexane after 2 h induced the crystallization of a deep red solid (65%). Anal. Calcd for Cp₂V-(p-TCD), C₂₅H₂₄N₂V: C, 74.44; H, 5.96; N, 6.95. Found: C, 74.1; H, 5.83; N, 6.82. $\nu_{CN}(Nujol) = 1645 \text{ cm}^{-1}$. $\mu_{eff} = 1.76 \mu_B \text{ at } 293.5$ K. Complex I reacts with O₂ both in the solid state and in solution, releasing p-TCD, as was indicated by the IR spectrum showing a strong C-N band at 2120 cm^{-1} .

Synthesis of $[Cp_2V(p-MeC_6H_4N(Me)C=NC_6H_4Me-p)]I_3$. A toluene (30 mL) solution of Cp₂V(p-TCD) (1.0 g, 2.48 mmol) was treated with neat CH₃I (0.25 mL, 4.0 mmol) at room temperature. The solution did not change color. When the solution was heated at 80 °C for 10 min, a red oil was formed. Toluene was completely evaporated, and the residue dissolved in THF (20 mL). When iodine was added (0.67 g, 2.64 mmol), the color of the solution changed from deep red to violet. The addition of toluene (25 mL) precipitated red-maroon crystals of $[Cp_2V(p-MeC_6H_4N(Me)C=NC_6H_4Me-p)]I_3$. Anal. Calcd for $C_{26}H_{27}I_3N_2V$: C, 39.05; H, 3.38; I, 47.65; N, 3.50. Found: C, 38.25; H, 3.31; I, 48.1; N, 3.42. $\nu_{CN}(Nujol) = 1680 \text{ cm}^{-1}$. $\mu_{\rm eff} = 1.78 \ \mu_{\rm B} \ {\rm at} \ 298 \ {\rm K}.$

Reaction of Cp₂V(p-TCD) with Iodine. A THF (30 mL) solution of $[Cp_2V(p-TCD)]$ (2.25 g, 5.58 mmol) was reacted with a THF (20 mL) solution of I_2 (2.60 g, 10.24 mmol). A brown crystalline solid

Table I. Summary of Crystal Data and Intensity Collection

	$C_{25}H_{24}N_{2}V(I)$	$C_{26}H_{27}I_{3}N_{2}V$ (II)
<i>a</i> , Å	14.446 (3)	14.260 (6)
b, A	14.186 (2)	19.176 (5)
<i>c</i> , Å	20.903 (4)	10.628 (4)
a, deg	90	90
β, deg	90	106.92 (5)
γ , deg	90	90
Z	8	4
M _r	403.4	799.2
D_{calcd} , g cm ⁻³	1.251	1.910
space group	Pna2,	$P2_1/c$
radiation	Ni-filtered Cu Ka	Nb-filtered Mo K α
	$(\lambda = 1.541 78 \text{ Å})$	$(\lambda = 0.71069 \text{ Å})$
μ, mm ⁻¹	3.97	3.66
μr	0.5	0.3
scan type	θ - 2θ	θ - 2θ
scan range	±0.5° from j	peak center
scan speed	2.5-10° θ/m	in
bkgd	stationary c	ryst at ±0.5°
2θ limits, deg	6-110	5-46
criterion for obsn	$I > 2\sigma(I)$	$I > 2\sigma(I)$
unique obsd data	1439	2283
unique total data	2776	3867
cryst dimens, mm	$0.11 \times 0.36 \times 0.50$	$0.10 \times 0.26 \times 0.45$

suddenly formed (70%), while the supernatant green-maroon solution showed a strong C-N band at 2120 cm⁻¹. Anal. Calcd for Cp₂VI₂, C₁₀H₁₀I₂V: C, 27.59; H, 2.30; I, 58.39. Found: C, 27.79; H, 2.46; I, 57.90.

X-ray Data Collection and Structure Refinement. Complex I.¹² Preliminary examination of the crystals revealed an orthorhombic unit cell. A summary of the crystal data and intensity data collection is given in Table I. Lattice constants came from a least-squares refinement of the 2θ values for 21 reflections having $2\theta > 60^{\circ}$.

Data were collected at room temperature on a single-crystal Siemens AED automated diffractometer using a crystal mounted with its [100] axis along the axis of the diffractometer. The crystals were wedged into a thin-walled glass capillary and sealed under nitrogen. The pulse-height discriminator was set to accept 90% of the Cu K α peak. The intensity of a standard reflection was monitored every 20 reflections as a check on crystal and instrument stability. No significant change in the measured intensity of this reflection was observed during data collection. For intensity and background, the "five-point technique"13 was used. The structure amplitudes were obtained after the usual Lorentz and polarization reduction, and the absolute scale was established by Wilson's method.¹⁴ No correction for absorption was made. The space group Pna21 was confirmed by structure determination and systematic absences.

The analysis of a three-dimensional Patterson map indicated that the vector distribution could be interpreted either on the basis of the Pnma centrosymmetric space group or on the basis of the Pna2, noncentrosymmetric one, in the first case with the assumption that the two independent vanadium atoms to lie on the mirror plane. The high number of the peaks around the metal centers in the Fourier map, phased on the positions of the two vanadium atoms and computed in the two space groups, indicated the structure to be probably noncentrosymmetric. Nevertheless we tried to solve the structure in the Pnma space group. The attempts were unsuccessful, and the centrosymmetric model was abandoned. The impossibility of removing the centrosymmetric distribution of the peaks, imposed by the particular positions of the two independent vanadium atoms, prevented us from solving the structure on the basis of the Pna21 space group with the use of the heavy-atom technique. Direct methods (MULTAN) were then used, and an E map computed with 100 phases having |E|> 1.96 yielded the coordinates of the metal atoms and those of a cyclopentadienyl ring. The Fourier map phased on these positions

(13) Hoppe, W. Acta Crystallogr., Sect. A 1969, A25, 67.
(14) Wilson, A. J. C. Nature (London) 1942, 150, 151.

⁽⁷⁾ Fachinetti, G.; Biran, C.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1978, 100, 921; Inorg. Chem. 1978, 17, 2995. (8)

Fachinetti, G.; Biran, C.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem. Soc., Dalton Trans. 1979, 792.

Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. 1979, 101, 1767.

⁽¹⁰⁾ Pasquali, M.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. *Soc.* **1979**, *101*, 4740. (11) Fischer, E. O.; Vigoureux, S. Chem. Ber. **1958**, *91*, 2205.

⁽¹²⁾ Data reduction and structure solution and refinement were carried out on a CYBER 7600 computer of the Centro di Calcolo dell'Italia Nord-Orientale, by using the SHELX-76 system of crystallographic computer programs (G. Sheldrick, University of Cambridge, 1976). Calculations were performed with the financial support of the University of Parma.

atomx/ay/bz/cV1152 (2)2484 (2)2446 (4)1131 (2)2264 (1)7432 (4)N(1)2294 (17)1778 (17)1924 (20)51 (10)1732 (11)6877 (8)N(2)2983 (13)1224 (11)2768 (9)-833 (11)1259 (10)7799 (10)C(30)2252 (18)1685 (16)2628 (21)-102 (10)1638 (9)7537 (12)C(1)687 (9)4024 (10)2390 (15)1284 (15)3631 (15)8014 (8)C(2)1297 (9)3897 (10)1864 (15)1782 (15)3571 (15)6520 (8)C(3)1218 (9)3664 (10)2789 (15)239 (15)353 (15)7187 (8)C(4)2122 (9)3647 (10)2789 (15)330 (15)3534 (15)7863 (8)C(6)-188 (16)2102 (11)2971 (13)1827 (18)1044 (18)7026 (11)C(7)-390 (16)2376 (11)2029 (13)2621 (18)1875 (18)7793 (11)C(6)430 (16)1024 (11)1926 (13)1540 (18)7123 (11)6735 (11)C(10)349 (16)1264 (11)1926 (13)1540 (18)710 (18)7635 (13)C(11)258 (14)1554 (11)1735 (9)-217 (11)1452 (11)6331 (8)C(12)3384 (14)1170 (11)1732 (9)-113 (11)969 (11)635 (8)C(13)3837 (14)818 (11)748 (9)-1516 (11)771 (11)5150 (8)C(14) <th></th> <th></th> <th>molecule A</th> <th></th> <th colspan="3">molecule B</th>			molecule A		molecule B		
V1152 (2)2446 (2)2446 (4)1131 (2)2264 (1)7432 (4)N(1)2204 (17)1778 (17)1924 (20)51 (10)1732 (11)6877 (8)N(2)298 (13)1224 (11)2768 (9)-83 (11)1259 (10)7799 (10)C(30)2252 (18)1668 (16)2628 (21)-102 (10)1638 (9)7537 (12)C(11)6877 (9)4024 (10)2390 (15)1284 (15)3363 (15)8014 (8)C(2)1297 (9)3897 (10)1864 (15)1782 (15)3721 (15)7432 (8)C(3)2184 (9)3664 (10)2111 (15)1136 (15)3563 (15)7187 (8)C(4)2122 (9)3647 (10)2789 (15)239 (15)3363 (15)7863 (8)C(6)-188 (16)2102 (11)2611 (13)2495 (18)1044 (18)7026 (11)C(7)-390 (16)2376 (11)2611 (13)2495 (18)1764 (18)7123 (11)C(8)23 (16)1708 (11)3029 (13)2621 (18)1875 (18)7793 (11)C(9)480 (16)1024 (11)2649 (13)1540 (18)710 (18)7635 (11)C(10)349 (16)1024 (11)1234 (9)-294 (11)1452 (11)516 (13)C(13)3837 (14)818 (11)716 (9)-294 (11)1452 (11)516 (13)C(14)3485 (14)1170 (11)174 (9)-1057 (11)967 (11)516 (11)C(13)3837 (14)818 (11)716 (9)-1216 (11)516 (13)526 (14) <th>atom</th> <th>x/a</th> <th>y/b</th> <th>z/c</th> <th>x/a</th> <th>y/b</th> <th>z/c</th>	atom	x/a	y/b	z/c	x/a	y/b	z/c
N(1)2204 (17)1778 (17)1924 (20)51 (10)1732 (11)6877 (8)N(2)298 (13)1224 (11)2768 (9)-433 (11)1259 (10)7799 (10)C(30)2252 (18)1685 (16)2628 (21)-102 (10)1638 (9)7537 (12)C(1)687 (9)4024 (10)2390 (15)1284 (15)3721 (15)8014 (8)C(2)1297 (9)3897 (10)1864 (15)1782 (15)3721 (15)7432 (8)C(3)2184 (9)3664 (10)2111 (15)1136 (15)3534 (15)7863 (8)C(4)212 (9)3669 (10)2961 (15)330 (15)3534 (15)7863 (8)C(5)1196 (9)3869 (10)2961 (13)1327 (18)1044 (18)7123 (11)C(8)23 (16)1708 (11)3029 (13)2621 (18)1875 (18)7793 (11)C(9)480 (16)1021 (11)2649 (13)2031 (18)1224 (18)8109 (11)C(11)2380 (14)1264 (11)1996 (13)1540 (18)710 (18)7653 (11)C(11)2380 (14)1264 (11)1232 (9)-1134 (11)969 (11)6305 (8)C(12)3384 (14)1010 (11)1323 (9)-1134 (11)969 (11)630 (8)C(13)337 (14)818 (11)748 (9)-1516 (11)726 (11)510 (8)C(14)3485 (14)1170 (11)174 (9)-1057 (11)963 (11)5767 (8)C(15)2681 (14)1170 (11)1750 (9)164 (11)1693 (11)5767 (8	v	1152 (2)	2484 (2)	2446 (4)	1131 (2)	2264 (1)	7432 (4)
N(2) $2983 (13)$ $1224 (11)$ $2768 (9)$ $-833 (11)$ $1259 (10)$ $7799 (10)$ C(3) $2252 (18)$ $1685 (16)$ $22390 (15)$ $11284 (15)$ $3631 (15)$ $8014 (8)$ C(1) $687 (9)$ $3897 (10)$ $1864 (15)$ $1782 (15)$ $3631 (15)$ $8014 (8)$ C(2) $1227 (9)$ $3897 (10)$ $1864 (15)$ $1782 (15)$ $3721 (15)$ $7432 (8)$ C(3) $2184 (9)$ $3664 (10)$ $2111 (15)$ $1136 (15)$ $3579 (15)$ $6520 (8)$ C(4) $2122 (9)$ $3647 (10)$ $2789 (15)$ $239 (15)$ $3534 (15)$ $7863 (8)$ C(6) $-188 (16)$ $2102 (11)$ $2789 (15)$ $229 (18)$ $1764 (18)$ $7123 (11)$ C(6) $-188 (16)$ $2102 (11)$ $2913 (13)$ $2621 (18)$ $1875 (18)$ $7793 (11)$ C(8) $23 (16)$ $1708 (11)$ $3029 (13)$ $2621 (18)$ $1875 (18)$ $793 (11)$ C(10) $349 (16)$ $1024 (11)$ $2649 (13)$ $2031 (18)$ $1224 (18)$ $8109 (11)$ C(11) $2380 (14)$ $1564 (11)$ $196 (13)$ $1540 (18)$ $710 (18)$ $731 (8)$ C(11) $2380 (14)$ $154 (11)$ $1324 (9)$ $-294 (11)$ $452 (11)$ $6331 (8)$ C(13) $3837 (14)$ $818 (11)$ $748 (9)$ $-1516 (11)$ $726 (11)$ $5714 (8)$ C(14) $2489 (14)$ $179 (11)$ $175 (9)$ $-217 (11)$ $1452 (11)$ $5176 (8)$ C(15) $2681 (14)$ $179 (11)$ $75 (9)$ <	N(1)	2204 (17)	1778 (17)	1924 (20)	51 (10)	1732 (11)	6877 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2)	2983 (13)	1224 (11)	2768 (9)	-833 (11)	1259 (10)	7799 (10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(30)	2252 (18)	1685 (16)	2628 (21)	-102(10)	1638 (9)	7537 (12)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	687 (9)	4024 (10)	2390 (15)	1284 (15)	3631 (15)	8014 (8)
$ \begin{array}{c} C(3) \\ C(4) \\ 2122 (9) \\ 3647 (10) \\ 2789 (15) \\ 278 (15) $	C(2)	1297 (9)	3897 (10)	1864 (15)	1782 (15)	3721 (15)	7432 (8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	2184 (9)	3664 (10)	2111 (15)	1136 (15)	3679 (15)	6920 (8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	2122 (9)	3647 (10)	2789 (15)	239 (15)	3563 (15)	7187 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	1196 (9)	3869 (10)	2961 (15)	330 (15)	3534 (15)	7863 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	-188 (16)	2102 (11)	1973 (13)	1827 (18)	1044 (18)	7026 (11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	-390 (16)	2376 (11)	2611 (13)	2495 (18)	1764 (18)	7123 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	23 (16)	1708 (11)	3029 (13)	2621 (18)	1875 (18)	7793 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	480 (16)	1021 (11)	2649 (13)	2031 (18)	1224 (18)	8109 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	349 (16)	1264 (11)	1996 (13)	1540 (18)	710 (18)	7635 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	2580 (14)	1554 (11)	1324 (9)	-294 (11)	1452 (11)	6331 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	3384 (14)	1010 (11)	1323 (9)	-1134 (11)	969 (11)	6305 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	3837 (14)	818 (11)	748 (9)	-1516 (11)	726 (11)	5714 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	3485 (14)	1170 (11)	174 (9)	-1057 (11)	967 (11)	5150 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	2681 (14)	1715 (11)	175 (9)	-217 (11)	1451 (11)	5176 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	2229 (14)	1907 (11)	750 (9)	164 (11)	1693 (11)	5767 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	3694 (22)	1083 (25)	-540 (18)	-1301 (20)	688 (27)	4460 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	2973 (14)	1318 (12)	3526 (10)	-822 (9)	1242 (10)	8508 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	3736 (14)	800 (12)	3733 (10)	-1572 (9)	755 (10)	8768 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	3963 (14)	778 (12)	4382 (10)	-1642 (9)	641 (10)	9429 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	3426 (14)	1273 (12)	4823 (10)	-963 (9)	1014 (10)	9830 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	2662(14)	1/91 (12)	4615(10)	-213 (9)	1501 (10)	9570 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	2436 (14)	1814 (12)	3967 (10)	-143 (9)	1615 (10)	8908 (10)
H(1)-46 4212 2373 1637 3637 8423 $H(2)$ 1024 3894 1342 2516 3788 7293 $H(3)$ 2738 3473 1756 1238 3705 6360 $H(4)$ 2726 3530 3042 -432 3502 6912 $H(5)$ 1005 3987 3423 -185 3460 8187 $H(6)$ -444 2515 1593 1602 746 6611 $H(7)$ -758 2959 2825 2858 2129 6757 $H(8)$ 67 1647 3558 3096 2419 8018 $H(9)$ 890 392 2780 1987 1216 8651 $H(10)$ 575 928 1565 1063 182 7782 $H(12)$ 3634 797 1776 -1487 718 6716 $H(13)$ 4461 378 779 -2138 263 5666 $H(15)$ 2460 1925 -314 109 1662 4722 $H(16)$ 1633 2344 683 760 2117 5772 $H(16)$ 1633 2344 683 760 2117 5772	C(27)	3928 (32)	1121 (35)	5459 (23)	-1240 (26)	789 (26)	10541 (14)
H(2) 1024 3894 1342 2516 3788 7293 $H(3)$ 2738 3473 1756 1238 3705 6360 $H(4)$ 2726 3530 3042 -432 3502 6912 $H(5)$ 1005 3987 3423 -185 3460 8187 $H(6)$ -444 2515 1593 1602 746 6611 $H(7)$ -758 2959 2825 2858 2129 6757 $H(8)$ 67 1647 3558 3096 2419 8018 $H(9)$ 890 392 2780 1987 1216 8651 $H(10)$ 575 928 1565 1063 182 7782 $H(12)$ 3634 797 1776 -1487 718 6716 $H(13)$ 4461 378 779 -2138 263 5666 $H(15)$ 2460 1925 -314 109 1662 4722 $H(16)$ 1633 2344 683 760 2117 5772 $H(16)$ 1633 2344 683 760 2117 5772	H(1)	-40	4212	2373	1637	3637	8423
H(3) 2738 3473 1756 1238 3705 6360 $H(4)$ 2726 3530 3042 -432 3502 6912 $H(5)$ 1005 3987 3423 -185 3460 8187 $H(6)$ -444 2515 1593 1602 746 6611 $H(7)$ -758 2959 2825 2858 2129 6757 $H(8)$ 67 1647 3558 3096 2419 8018 $H(9)$ 890 392 2780 1987 1216 8651 $H(10)$ 575 928 1565 1063 182 7782 $H(12)$ 3634 797 1776 -1487 718 6716 $H(13)$ 4461 378 779 -2138 263 5666 $H(15)$ 2460 1925 -314 109 1662 4722 $H(16)$ 1633 2344 683 760 2117 5772 $H(16)$ 1633 2344 683 760 2117 5772	H(2)	1024	3894	1342	2516	3788	7293
H(4) 2726 3530 3042 -432 3502 6912 $H(5)$ 1005 3987 3423 -185 3460 8187 $H(6)$ -444 2515 1593 1602 746 6611 $H(7)$ -758 2959 2825 2858 2129 6757 $H(8)$ 67 1647 3558 3096 2419 8018 $H(9)$ 890 392 2780 1987 1216 8651 $H(10)$ 575 928 1565 1063 182 7782 $H(12)$ 3634 797 1776 -1487 718 6716 $H(13)$ 4461 378 779 -2138 263 5666 $H(15)$ 2460 1925 -314 109 1662 4722 $H(16)$ 1633 2344 683 760 2117 5772 $H(16)$ 1633 2344 683 760 2117 5772	H(3)	2738	3473	1/56	1238	3705	6360
H(3) 1003 3987 3423 -183 3460 8187 $H(6)$ -444 2515 1593 1602 746 6611 $H(7)$ -758 2959 2825 2858 2129 6757 $H(8)$ 67 1647 3558 3096 2419 8018 $H(9)$ 890 392 2780 1987 1216 8651 $H(10)$ 575 928 1565 1063 182 7782 $H(12)$ 3634 797 1776 -1487 718 6716 $H(13)$ 4461 378 779 -2138 263 5666 $H(15)$ 2460 1925 -314 109 1662 4722 $H(16)$ 1633 2344 683 760 2117 5772 $H(16)$ 1633 2344 683 760 2117 5772	n(4)	2720	3330	3042	-432	3502	6912
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	П(3)	1005	3987	3423	-185	3460	8187
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n(0)		2313	1393	1602	/40	6611
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	П(/) Ц(9)	-/38	2939	2823	2838	2129	6/5/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	П(0) Ц(0)	07	202	3338	3090	2419	8018
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	П(Э) Ц(10)	670	392	2/00	1987	1210	8031
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(10)	2624	920	1303	1003	182	6716
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(12)	4461	379	770	-140/	710	5666
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(15)	2460	1975	_314	-2138	1662	4722
1000 1000 2017 000 2017 0112 000 2017 0112 001 0012 001	H(16)	1633	2344	683	760	2117	5772
HIZZI 4179 195 1419 -2145 481 8517	H(22)	4179	395	3439	-2145	481	8517
H(23) 4569 406 4592 -2198 343 9696	H(23)	4569	406	4592	-2198	343	9696
H(25) 2213 2158 4965 390 1809 9831	H(25)	2213	2158	4965	390	1809	9831
H(26) 1823 2147 3812 443 1947 8651	H(26)	1823	2147	3812	443	1947	8651

^a Estimated standard deviations in parentheses.

showed a partial releasing of centrosymmetry and gave the coordinates of some atoms of *p*-TCD ligands. The remaining nonhydrogen atoms of the two independent molecules were located by five successive Fourier difference syntheses. Refinement was carried out isotropically down to R = 0.17 by using full-matrix least squares¹⁵ and a rigid-body constraint for the Cp and Ph rings. As refinement proceeded, it became evident that many of the parameters were oscillating. This prompted us to examine the possibility that the two unique molecules might be crystallographically related, especially since they are essentially identical and related by a pseudo c glide plane passing through the two independent vanadium atoms and perpendicular to [100] (see Figure 1). Reexamination of the row data, axial photos, and cell constants¹⁶ indicated that no higher symmetry existed and supported our choice of unit cell. We concluded that the presence of the pseudosymmetry element caused complications in the final stages of refinement. Inclusion of anisotropic parameters tended to make the thermal ellipsoids non positive definite for some carbon atoms. These were then refined isotropically. After introduction of the cyclopentadienyl and phenyl hydrogen atoms¹⁷ in calculated positions as fixed contributors, refinement was stopped at R = 0.084. An electron density synthesis for the final rigid-group model showed no unusual features with no peaks above the general background. This model was considered satisfactory, although poorly refined, in view of the large number of variables with respect to the number of observations and in view of the high correlations between the two pseudosymmetry-related molecules. The effects of anomalous dispersion were included in all structure factor calculations. No evidence for secondary extinction was found. During the final stage of refinement, no parameter shifted by more than 1.5σ . The function minimized during least-squares refinement was $\sum w |\Delta F|^2$. A value of 0.003 for g was used in the calculation of the weight, $w (w^{-1} = \sigma_{F_0}^2 + |g|F_0^2)$. Final atomic coordinates are given in Table II. Thermal parameters are reported in Table VI.¹⁸

Complex II. Preliminary examination of the crystals revealed a monoclinic unit cell. A summary of the crystal data and intensity data collection is given in Table I. The unit cell parameters were obtained from a least-squares refinement of the 2θ values of 20

 ⁽¹⁵⁾ Atomic form factors were from: Cromer, D. T.; Mann, J. B. Acta Crystallogr., Sect. A 1968, A24, 321 (for nitrogen and carbon); "International Tables for X-ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV, p 99 (for vanadium and iodine).

⁽¹⁶⁾ Lawton, S. L.; Jacobson, R. A. "TRACER: The Reduced Cell and Its Crystallographic Applications", Report IS-1141; USAEC, Ames Laboratory: Ames, Iowa, 1965.

⁽¹⁷⁾ Scattering factors for hydrogen atoms were taken from: Stewart, R.

<sup>F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42, 3175.
(18) See paragraph at the end of the paper regarding supplementary material.</sup>

Table III. Final Atomic Fractional Coordinates (×10⁴) for Complex II^a

atom	x/a	y/b	z/c	atom	x/a	y/b	z/c		
v	2684 (2)	729 (2)	637 (3)	C(21)	3125 (10)	-1387 (8)	-712 (16)		
I(1)	-254 (1)	863 (1)	3326 (1)	C(22)	3688 (12)	-1590 (9)	531 (15)		
I(2)	1707 (1)	1127 (1)	4889 (1)	C(23)	3934 (11)	-2269 (10)	779 (14)		
I(3)	3743 (1)	1417 (1)	6488(1)	C(24)	3652 (11)	-2808 (9)	-171 (16)		
N(1)	2365 (9)	-295 (7)	837 (12)	C(25)	3091 (11)	-2575 (9)	-1400 (15)		
N(2)	2892 (9)	-674 (7)	-1000 (12)	C(26)	2839 (11)	-1898 (10)	-1657 (16)		
C(30)	2688 (11)	-238 (8)	-142 (16)	C(27)	3912 (14)	-3544 (9)	99 (19)		
C(31)	3087 (12)	-356 (9)	-2181 (16)	H(1)	1172	1368	1658		
C(1)	1357 (24)	1337 (22)	723 (24)	H(2)	2160	2242	589		
C(2)	1842 (18)	1744 (10)	140 (30)	H(3)	2257	1660	-1660		
C(3)	1870 (18)	1433 (17)	-992 (24)	H(4)	1312	468	-1977		
C(4)	1378 (21)	822 (14)	-1121 (35)	H(5)	559	289	- 84		
C(5)	1038 (18)	757 (20)	-105 (50)	H(6)	3792	2086	1140		
C(6)	3887 (25)	1531 (16)	1387 (62)	H(7)	4419	1055	-184		
C(7)	4236 (19)	994 (32)	749 (23)	H(8)	4619	-50	1223		
C(8)	4285 (17)	431 (15)	1502 (58)	H(9)	3887	100	3108		
C(9)	3934 (27)	554 (32)	2464 (36)	H(10)	3396	1396	3246		
C(10)	3690 (22)	1182 (35)	2470 (47)	H(12)	1514	-1483	-170		
C(11)	1874 (11)	-773 (8)	1415 (14)	H(13)	589	-2287	905		
C(12)	1441 (11)	-1352 (9)	804 (14)	H(15)	1158	-883	4178		
C(13)	918 (11)	-1807 (9)	1405 (15)	H(16)	2053	-84	3110		
C(14)	808 (12)	-1645 (9)	2643 (15)	H(22)	3940	-1197	1307		
C(15)	1235 (14)	-1031 (10)	3218 (16)	H(23)	4358	-2421	1786		
C(16)	1747 (12)	-581 (8)	2634 (15)	H(25)	2844	-2963	-2185		
C(17)	285 (15)	-2141 (9)	3306 (19)	H(26)	2403	-1745	-2667		

^a Estimated standard deviations in parentheses.

Figure 1. Projection on (010) showing the two crystallographically independent molecules related by the pseudo c glide in complex I.

reflections ($2\theta > 30^{\circ}$). Data collection and data reduction techniques have been described above.¹² No corrections for absorption were made.

The structure was solved by the usual heavy-atom method. From the three-dimensional Patterson synthesis, approximate coordinates were obtained for the three independent iodine atoms in general positions. Two successive Fourier syntheses established the coordinates of the remaining nonhydrogen atoms. Refinement was by full-matrix least squares first isotropically down to R = 0.17 and then anisotropically for iodine and vanadium down to R = 0.077. An improvement to R = 0.065 was obtained with the anisotropic refinement of all the atoms. The hydrogen atoms were included in idealized positions as fixed contributors with isotropic thermal parameters equal to those of the carbon atoms to which they are bonded. The subsequent refinement of the nonhydrogen atoms stopped at R = 0.063. The final difference map showed several peaks of height $0.6-1.4 e Å^{-3}$ in the environment of the I_3^- ion. In the other regions the height of the most important peaks was about $0.4 e Å^{-3}$. The effects of anomalous dispersion were included in all structure factor calculations. No evidence for secondary extinction was found. During the final stage of refinement, no parameter shifted by more than 0.4σ .

The function minimized was $\sum w |\Delta F|^2$. A value of 0.003 for g was used in the calculation of w. Final atomic coordinates are given in Table III. Thermal parameters are reported in Table VII.¹⁸

Results and Discussion

Vanadocene, Cp_2V ($Cp = \eta^5 - C_5H_5$), reacts readily with *p*-tolylcarbodiimide (*p*-TCD) dissolved in toluene, giving a red-brown solution from which the addition of hexane induces the crystallization of I. Complex I, which is very sensitive

$$C_{P_2V} + RN = C = NR - C_{P_2V} \downarrow_{NR}^{C NR}$$
 (1)
 $R = p - CH_3C_6H_4$

to oxygen, releases *p*-TCD. The magnetic moment of 1.76 μ_B at 293.5 K as well as the IR spectrum justifies the formulation given for I. The drastic lowering of the C=N stretching vibration from 2120 cm⁻¹ (free *p*-TCD) to 1645 cm⁻¹ indicates that the cumulene structure is no longer present. Analogous lowering was observed for (PPh₃)₂Ni-(PhN=C-NPh), whose C=N band is at 1660 cm⁻¹. The X-ray structure analysis confirmed the reported formulation.

The possibility of modifying the carbodiimide reactivity with the assistance of a metal center deserves much attention. On this subject, we note that complex I is the intermediate which, adding a further carbodiimide, gives the metallacycle preceding the carbodiimide's disproportionation (see Introduction). A related process is the recently reported cocyclization of diphenylcarbodiimide with acetylenes¹⁹

Figure 2. View of the molecular shape of the two crystallographically independent molecules $Cp_2V(p-TCD)$.

which involves in a first step the formation of A followed by the reaction with acetylenes. This reactivity bears relevance to incorporating CO_2 in unsaturated organic substrates.²⁰

Moreover, various kinds of cycloadditions to the uncomplexed C=N bond can be devised. This application requires, however, restoring the starting C=N bond from the coordinated C-N unit. With regard to this, we found that complex

I reacts with I₂ giving the starting *p*-TCD and Cp₂VI₂.²¹ The alkylation of the η^2 -C,N-bonded *p*-TCD, here reported, represents a model study for converting CO₂ into the corresponding η^2 -C,O metal-bonded formato esters. This reaction, which finds rather wide application for transforming coordinated CS2 into coordinated methoxy dithioesters,^{22,23} has never been applied to other CO_2 -like molecules.

A toluene solution of I reacts at 80 °C with CH₃I, giving a red oil which was dissolved in THF and reacted with iodine.

II was isolated as red-brown crystals (1.78 μ_B at 298 K; $v_{\rm CN}$ (Nujol) 1680 cm⁻¹). Although the isolation of **B** was not realized, its existence is proposed on the basis of the nature of II and of the sequence observed in the alkylation of coordinated CS₂.²³ Complex II represents the first complex containing an amidinyl ligand. Should this alkylation be accomplished on CO₂, this could produce η^2 -C,O metal-bonded formato esters. The structures of I and II greatly help in understanding the carbodiimide and amidinyl ligand bonding modes and the related interconversion.

Description of the Structures of I and II

In the asymmetric unit of complex I there are two crystallographically independent molecules (Figure 1), $Cp_2V(p-$

Figure 3. View of the molecular structure of $[Cp_2V(p-CH_3C_6H_4N (CH_3)C = NC_6H_4CH_3-p)$ ⁺ in complex II.

Complex (II)

Figure 4.

TCD), whose geometries are not significantly different (Figure 2). The crystals of II are built up by monomeric cations $[Cp_2V(p-MeC_6H_4N=C-N(Me)C_6H_4Me-p)]^+$ (Figure 3) and I₃⁻ anions separated by the usual van der Waals interactions. In both cases the two Cp rings, which are η^5 bonded to vanadium, make a cavity in the equatorial plane for the accommodation of the carbodiimide ligand, η^2 -C,N bonded to the metal. The nonbonded nitrogen lies in the plane of the VCN unit in both complexes (Table VIII). The reciprocal orientation of the Cp rings is staggered for molecule A in I and midway (neither staggered nor eclipsed) for molecule B in complex II; Cp-V-Cp angles are 140.0 (10) and 138.9 (18)° in I and II, respectively. V-C(Cp) and V-Cp(centroid) distances (Tables IV and V) fall in the usual range.^{21,23,24} In II, the C(Cp)-C(Cp) ring distances, which are shorter than those usually found (1.43 Å),²⁵ are influenced by thermal motion or disorder by which cyclopentadienyls are affected, as indicated by the high values of the anisotropic thermal parameters of the ring carbon atoms.

In spite of the poor reliability of the structure of I, some interesting comparisons can be done between $M(CN_2)$ units of the two complexes. The most relevant structural parameters (Tables IV and V) are associated with these parts in complexes (Figure 4). The same trend of distorted trigonal angles around C(30) is observed in both complexes.

The C(30)–N(1) and C(30)–N(2) distances in I are different, although the high values of esd's make the comparison uncertain, and approximate closely a single and a double bond,

⁽¹⁹⁾ Hoberg, H.; Burkhart, G. Angew. Chem., Int. Ed. Engl. 1979, 18, 525. (20) Sasaki, Y.; Inoue, Y.; Hashimoto, H. J. Chem. Soc., Chem. Commun. 1976, 605; Bull. Chem. Soc. Jpn. 1978, 51, 2375. Musco, A.; Perego, C.; Tartiari, V. Inorg. Chim. Acta 1978, 28, L147. Jolly, P. W.; Stobbe, S.; Wilke, G.; Goddard, R.; Kruger, C.; Sekutowski, J. C.; Tsay, Y. H. Angew. Chem., Int. Ed. Engl. 1978, 17, 124.
(21) Gambarotta, S.; Pasquali, M.; Floriani, C.; Chiesi-Villa, A.; Guastini,

 ⁽²⁾ Survey, G., Harris, and M., Harris, R., Chen, J. M., T., Calattin, C. Inorg, Chem., in press.
 (22) Fowles, G. W. A.; Pu, L. S.; Rice, D. A. J. Organomet. Chem. 1973, 54 C17. Grundy, K. R.; Harris, R. O.; Roper, W. R. Ibid. 1975, 90, C34. Collins, T. J.; Roper, W. R.; Town, K. G. Ibid. 1976, 121, C41. Chen, C. B. Collins, T. J.; Labore, M. R.; Town, K. G. Ibid. 1976, 121, C41. Clark, G. R.; Collins, T. J.; James, J. M.; Roper, W. R. *Ibid.* 1977, *125*, C23. Waters, J. M.; Ibers, J. A. *Inorg. Chem.* 1977, *16*, 3273.
 Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem. Soc., Dalton Trans. 1979, 1612.

Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Inorg. Chem. (24)1979, 18, 2282 and references cited therein

Wheatly, D. J. Perspect. Struct. Chem. 1967, 1, 1. (25)

Table IV. Bond Distances (A) and Bond Angles (Deg) in Complex I,^a with Estimated Standard Deviations in Parentheses

	mol A	mol B		mol A	mol B
V-C(1)	2.29 (2)	2.30 (2)	V-C(6)	2.24 (2)	2.17 (3)
V-C(2)	2.35 (2)	2.27 (2)	V-C(7)	2.26 (2)	2.19 (3)
V-C(3)	2.35 (2)	2.27 (2)	V-C(8)	2.32 (2)	2.35 (3)
V-C(4)	2.28 (2)	2.30 (2)	V-C(9)	2.33 (2)	2.42 (3)
V-C(5)	2.24 (2)	2.32 (2)	V-C(10)	2.29 (2)	2.32 (3)
average	2.30 (3)	2.29 (1)	average	2.29 (2)	2.29 (5)
V- Cp(1)	1.96 (2)	1.95 (2)	C(30) - N(2)	1.28 (3)	1.31 (2)
V-Cp(2)	1.94 (2)	1.95 (3)	N(1)-C(11)	1.40 (4)	1.31 (2)
V-N(1)	2.12 (3)	2.09 (2)	N(2)-C(21)	1.59 (3)	1.48 (3)
V-C(30)	1.99 (3)	2.00 (2)	C(14) - C(17)	1.53 (4)	1.54 (4)
C(30)-N(1)	1.48 (6)	1.40 (3)	C(24)-C(27)	1.53 (5)	1.57 (4)
	mol A	mol B		mol A	mol B
C(1)-V-C(2)	35.6 (9)	36.2 (7)	C(6)-V-C(7)	36.8 (9)	38.0 (10)
C(2) - V - C(3)	35.2 (6)	36.4 (7)	C(7) - V - C(8)	36.2 (7)	36.3 (9)
C(3) - V - C(4)	35.7 (11)	36.1 (7)	C(8)-V-C(9)	35.6 (6)	34.6 (9)
C(4) - V - C(5)	36.6 (5)	35.7 (7)	C(9) - V - C(10)	35.8 (8)	34.8 (8)
C(5) - V - C(1)	36.5 (7)	35.8 (7)	C(10)-V-C(6)	36.6 (7)	36.7 (9)
average	36.0 (6)	36.0 (3)	average	36.1 (4)	35.9 (7)
N(1)-V-C(30)	42.0 (12)	40.1 (6)	N(1)-C(30)-N(2)	108.2 (39)	125.4 (22)
N(1)-V-Cp(1)	105.2 (8)	106.9 (8)	C(30)-N(2)-C(21)	100.3 (23)	114.7 (15)
N(1) - V - Cp(2)	108.4 (8)	110.7 (9)	N(1)-C(11)-C(12)	116.7 (19)	121.0 (16)
C(30) - V - Cp(1)	110.7 (8)	108.5 (7)	N(1)-C(11)-C(16)	123.1 (19)	118.9 (15)
C(30) - V - Cp(2)	108.8 (8)	108.9 (8)	N(2)-C(21)-C(22)	105.0 (16)	112.9 (15)
Cp(1)-V-Cp(2)	140.0 (7)	140.0 (10)	N(2)-C(21)-C(26)	135.0 (17)	127.0 (15)
V-N(1)-C(30)	64.2 (15)	66.8 (10)	C(13)-C(14)-C(17)	137.7 (20)	128.4 (18)
V-N(1)-C(11)	147.5 (19)	151.7 (13)	C(15)-C(14)-C(17)	102.2 (19)	111.3 (18)
C(11)-N(1)-C(30)	148.3 (23)	140.3 (15)	C(23)-C(24)-C(27)	103.9 (23)	108.2 (17)
V-C(30)-N(1)	73.8 (15)	73.1 (10)	C(25)-C(24)-C(27)	136.1 (24)	131.8 (17)
V-C(30)-N(2)	175.7 (35)	161.5 (25)			

 a Cp(1) and Cp(2) are referred to the centroids of the rings C(1)-C(5) and C(6)-C(10), respectively. All the average values were calculated by using the formulas

$\Sigma w_i x_i$	r 1	$\Sigma w_i x_i^2$	1]	1/2
$x_{\rm m} =$	$\sigma_{\rm m} = -$	$-(x_m^2) +$		$w_i = \sigma_i^{-2}$
Σw_i		$1 \Sigma w_i$	Σw_i	

where x_i are the individual observations and σ_i are their standard deviations.

Table V. Bond Distances (A) and Bond Angles (Deg), with Estimated Standard Deviations in Parentheses, in Complex II

V-C(1) V-C(2) V-C(3) V-C(4) V-C(5) average	2.25 (4) 2.27 (2) 2.24 (3) 2.23 (3) 2.25 (3) 2.25 (2)	V-C(6) V-C(7) V-C(8) V-C(9) V-C(10) average	2.27 (4) 2.24 (3) 2.27 (4) 2.25 (4) 2.23 (5) 2.25 (2)	C(1)-C(2) C(2)-C(3) C(3)-C(4) C(4)-C(5) C(5)-C(1) average	1.31 (4) 1.35 (4) 1.35 (4) 1.31 (6) 1.41 (6) 1.34 (3)	C(6)-C(7) C(7)-C(8) C(8)-C(9) C(9)-C(10) C(10)-C(6) average	1.40 (6) 1.33 (7) 1.28 (6) 1.25 (9) 1.43 (7) 1.35 (5)
V-Cp(1) V-Cp(2) V-N(1) V-C(30) C(30)-N(1) I(1)-I(2) I(2)-I(3)	1.93 (3) 1.94 (4) 2.04 (1) 2.03 (2) 1.26 (2) 2.852 (3) 2.959 (3)	C(30)-N(2) N(1)-C(11) N(2)-C(21) N(2)-C(31) C(14)-C(17) C(24)-C(27)	1.33 (2) 1.40 (2) 1.42 (2) 1.49 (2) 1.50 (3) 1.47 (2)	C(11)-C(12) C(12)-C(13) C(13)-C(14) C(14)-C(15) C(15)-C(16) C(16)-C(11) average	1.34 (2) 1.42 (2) 1.40 (2) 1.38 (3) 1.39 (3) 1.41 (2) 1.39 (2)	C(21)-C(22) C(22)-C(23) C(23)-C(24) C(24)-C(25) C(25)-C(26) C(26)-C(21) average	1.39 (2) 1.35 (3) 1.42 (2) 1.39 (2) 1.35 (3) 1.38 (2) 1.39 (1)
C(1)-V-C(2) C(2)-V-C(3) C(3)-V-C(4) C(4)-V-C(5) C(5)-V-C(1) average	33.8 (12) 35.0 (11) 35.3 (10) 34.1 (15) 36.5 (14) 35.0 (7)	C(6)-V-C(7) C(7)-V-C(8) C(8)-V-C(9) C(9)-V-C(10) C(10)-V-C(6) average	36.2 (17) 34.4 (16) 33.0 (17) 32.5 (22) 37.0 (20) 34.7 (11)	C(2)-C(1)-C(5) C(1)-C(2)-C(3) C(2)-C(3)-C(4) C(3)-C(4)-C(5) C(4)-C(5)-C(1) average	107.1 (28) 108.3 (25) 108.9 (25) 107.7 (30) 108.0 (30) 108.1 (12)	C(7)-C(6)-C(10) C(6)-C(7)-C(8) C(7)-C(8)-C(9) C(8)-C(9)-C(10) C(9)-C(10)-C(6) average	103.1 (37) 105.6 (33) 111.4 (38) 110.7 (45) 109.0 (40) 107.5 (23)
$\begin{array}{l} N(1)-V-C(30) \\ N(1)-V-Cp(1) \\ N(1)-V-Cp(2) \\ C(30)-V-Cp(2) \\ C(30)-V-Cp(2) \\ Cp(1)-V-Cp(2) \\ V-N(1)-C(30) \\ V-N(1)-C(11) \\ C(11)-N(1)-C(30) \\ V-C(30)-N(1) \\ V-C(30)-N(2) \\ N(1)-C(30)-N(2) \\ N(1)-C(30)-N($	36.0 (6) 109.3 (10) 110.2 (15) 110.3 (11) 108.1 (15) 138.9 (18) 71.6 (9) 146.2 (11) 140.3 (14) 72.4 (10) 151.7 (13) 135.8 (15)	$\begin{array}{c} C(30)-N(2)-C(21)\\ C(30)-N(2)-C(31)\\ C(31)-N(2)-C(21)\\ N(1)-C(11)-C(12)\\ N(1)-C(11)-C(12)\\ N(2)-C(21)-C(22)\\ N(2)-C(21)-C(22)\\ N(2)-C(21)-C(26)\\ C(13)-C(14)-C(17)\\ C(15)-C(14)-C(17)\\ C(23)-C(24)-C(27)\\ C(25)-C(24)-C(27)\\ \end{array}$	122.8 (13) 116.8 (13) 119.1 (13) 123.2 (14) 116.6 (13) 120.7 (14) 121.8 (15) 120.3 (15) 123.1 (15) 124.0 (15) 122.4 (16)	C(12)-C(11)-C(16) C(11)-C(12)-C(13) C(12)-C(13)-C(14) C(13)-C(14)-C(15) C(14)-C(15)-C(16) C(15)-C(16)-C(11) average	119.8 (15) 121.3 (14) 120.2 (15) 116.6 (16) 123.6 (16) 118.3 (15) 119.2 (26)	C(22)-C(21)-C(26) C(21)-C(22)-C(23) C(22)-C(23)-C(24) C(23)-C(24)-C(25) C(24)-C(25)-C(26) C(25)-C(26)-C(21) average	117.5 (15) 120.0 (15) 123.9 (14) 113.6 (15) 122.9 (16) 122.0 (15) 119.7 (29)
I(1) - I(2) - I(3)	179.2(1)						

respectively. In II both C-N distances have a high doublebond character. The unhybridized p orbital on C(30) in II may have some interaction with the two nitrogen atoms and the metal, so that considerable electronic delocalization occurs over the three atoms. This is the pattern observed in many carbenoid complexes and supports the carbenoid nature of C(30).

The C=N stretching frequencies of I and II parallel the structural data, indicating an increasing C=N double-bond character of the C(30)-N(1) unit passing from I to II. This and other features of the η^2 -C,N-bonded amidinyl are highly reminiscent of η^2 -C,O-bonded acyls²⁶ and η^2 -C,N-bonded iminoacyls.²⁷ Amidinyl ligands in this form, like the ligands cited above, can be viewed as three-electron donors.

V-C(30) bond distances fall in the range of the very few V-C (sp²) distances so far reported.²⁴ The counteranion I_3^- has the usual structural features (Table V)²⁸ and does not interact significantly with the macrocation, the shortest contact distance being 3.87 (13) Å [I(1)...N(2) ($\bar{x}, \bar{y}, \bar{z}$)].

Conclusions

Besides the structural models for metal-bonded CO_2 and carboxylato esters, the present report describes the alkylation of a coordinated carbodiimide viewed as a reaction which can be considered a modeling study for the alkylation of metalbonded CO_2 . Moreover, vanadocene can be proposed as a blocking agent for one double bond of a cumulene, so that it may promote a new kind of reactivity for the coordinated molecule.

Acknowledgment. We thank the CNR (Rome) for financial support.

Registry No. I, 75102-51-1; II, 75102-53-3; Cp₂VI₂, 75102-54-4; Cp₂V, 1277-47-0; CH₃I, 74-88-4.

Supplementary Material Available: Listings of structure factor amplitudes for complexes I and II, anisotropic thermal parameters (Tables VI and VII), and least-squares planes (Table VIII) (32 pages). Ordering information is given on any current masthead page.

The Molybdenum–Molybdenum Triple Bond. 7.¹ Bis(1,3-di-*p*-tolyltriazenido)tetrakis(dimethylamido)dimolybdenum

M. H. CHISHOLM,* D. A. HAITKO, J. C. HUFFMAN, and K. FOLTING

Received May 14, 1980

 $Mo_2(NMe_2)_6$ reacts in hydrocarbon solvents with 1,3-di-*p*-tolyltriazine, $C_7H_8NNNHC_7H_8$, to give the title compound, $Mo_2(NMe_2)_4(C_7H_8N_3C_7H_8)_2$, as a red, crystalline solid. An X-ray study shows that in the solid state each molybdenum atom is coordinated to four nitrogen atoms which lie in a plane; there is an unbridged molybdenum-to-molybdenum triple bond with a Mo-Mo distance of 2.212 (1) Å, and the molecule has crystallographically imposed C_2 symmetry. Variable-temperature ¹H NMR spectra recorded at 220 MHz support the view that this form of the molecule is present in solution. These observations are compared with other findings in dimolybdenum and ditungsten chemistry. Crystal data for $Mo_2(NMe_2)_4(C_7H_8N_3C_7H_8)_2$ are a = 27.529 (7) Å, b = 8.728 (2) Å, c = 18.294 (4) Å, $\beta = 58.34$ (1)°, V = 3741.58 Å³, Z = 4, $d_{calcd} = 1.45$ g cm⁻³, and space group C2/c.

Introduction

Previously we have shown that 1,3-diphenyltriazine and $W_2(NMe_2)_6$ react to give $W_2(NMe_2)_4(PhN_3Ph)_2^2$ and $Mo_2(NMe_2)_6$ and 2-hydroxy-6-methylpyridine react to give $Mo_2(NMe_2)_4(C_6H_6NO)_2$.¹ In both reactions, the replacement of two dimethylamido groups is accomplished by an increase in coordination number of the metal, since the triazenido and pyridine ligands act as bidentate ligands. However, the molybdenum and tungsten compounds adopt bridged and unbridged structures, respectively, as shown in 1 and 2.

- (1) Part 6: M. H. Chisholm, J. C. Huffman, K. Folting, and I. P. Rothwell, submitted for publication in *Inorg. Chem*.
- (2) M. H. Chisholm, J. C. Huffman, and R. L. Kelly, Inorg. Chem., 18, 3554 (1979).

preference for the bridged or nonbridged structure could be determined by the subtle differences that exist within the coordination chemistry of molybdenum and tungsten. For example, in closely related compounds containing metal-tometal triple bonds, the Mo-to-Mo distance is shorter by ca. 0.08 Å than the W-to-W distance, and the triazenido ligand is known to bridge the molybdenum-to-molybdenum quadruple bond in the compound Mo₂(PhN₃Ph)₄ which has a Mo-to-Mo distance of 2.083 (2) Å.³ As part of our continuing program which is aimed at establishing the coordination chemistry surrounding the (M=M)⁶⁺ moiety (M = Mo, W), we decided to prepare and structurally characterize the related pair of molybdenum and tungsten compounds. We report here the preparation and characterization of Mo₂(NMe₂)₄-(C₇H₈N₃C₇H₈)₂.

Results

Synthesis. In hydrocarbon solvents, $Mo_2(NMe_2)_6$ and 1,3-di-*p*-tolyltriazine react upon mixing at room temperature

⁽²⁶⁾ Fachinetti, G.; Floriani, C.; Marchetti, F.; Merlino, S. J. Chem. Soc., Chem. Commun. 1976, 522. Fachinetti, G.; Fochi, G.; Floriani, C. J. Chem. Soc., Dalton Trans. 1977, 1946. Fachinetti, G.; Floriani, C.; Stoeckli-Evans, H. Ibid. 1977, 2297.

 ⁽²⁷⁾ Adams, R. D.; Chodosh, D. F. J. Am. Chem. Soc. 1977, 99, 6544; Inorg. Chem. 1978, 17, 41. Adams, R. D.; Golembeski, N. M. Ibid. 1978, 17, 1969. van Bolhuis, F.; de Boer, E. J. M.; Teuben, J. H. J. Organomet. Chem. 1979, 170, 299.

⁽²⁸⁾ Runsink, J.; Swen-Valstra, S.; Migchelsen, T. Acta Crystallogr., Sect. B 1972, B28, 1331.

Contribution from the Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405

⁽³⁾ F. A. Cotton, G. W. Rice, and J. C. Sekutowski, *Inorg. Chem.*, 18, 1143 (1979).